organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(2-anilino-2-oxoethyl)-1*H*imidazol-3-ium chloride acetonitrile monosolvate

Chuang-Yi Liao and Hon Man Lee*

National Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058 Correspondence e-mail: leehm@cc.ncue.edu.tw

Received 11 November 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.129; data-to-parameter ratio = 19.7.

In the title compound, $C_{19}H_{19}N_4O_2^+ \cdot Cl^- \cdot C_2H_3N$, the dihedral angle between the two phenyl rings is 69.57 (8)° while the dihedral angles between the imidazole ring and the phenyl rings are 70.61 (7) and 82.11 (7)°. In the crystal, $N-H\cdots \cdot Cl$, $C-H\cdots \cdot O$, $C-H\cdots \cdot Cl$ and $C-H\cdots \cdot N$ hydrogen bonds link the imidazolium cations, chloride anions and acetonitrile solvent molecules into a two-dimensional hydrogen-bonded network parallel to (001); an intramolecular $C-H\cdots \cdot O$ hydrogen bond is also observed.

Related literature

For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang *et al.* (2007), Liao, Chan, Zeng *et al.* (2007) and Liao *et al.* (2008), respectively.

Experimental

Crystal data $C_{19}H_{19}N_4O_2^+ \cdot Cl^- \cdot C_2H_3$ $M_r = 411.89$ Triclinic, $P\overline{1}$

N	a = 8.7801 (6) Å
	b = 10.4544 (6) Å
	c = 12.1998 (7) Å

 $\alpha = 91.842 (4)^{\circ}$ $\beta = 95.492 (4)^{\circ}$ $\gamma = 108.096 (4)^{\circ}$ $V = 1057.28 (11) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART APEXII	13815 measured reflections
diffractometer	5067 independent reflections
Absorption correction: multi-scan	3597 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.040$
$T_{\min} = 0.956, \ T_{\max} = 0.970$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 257 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.96$ e Å⁻³5067 reflections $\Delta \rho_{min} = -0.90$ e Å⁻³

Mo $K\alpha$ radiation

 $0.22 \times 0.20 \times 0.15 \text{ mm}$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 150 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots C11^{ii}$ $N4-H4\cdots C11^{iii}$ $C4-H4B\cdots N5$ $C12-H12A\cdots O1^{iiii}$ $C12-H12B\cdots C11^{iiii}$ $C19-H19\cdots O2$ $C20-H20A\cdots O2$	0.88 0.88 0.99 0.99 0.99 0.99 0.95 0.98	2.28 2.35 2.50 2.25 2.67 2.31 2.32	3.1624 (17) 3.2287 (17) 3.262 (3) 3.126 (2) 3.400 (2) 2.911 (2) 3.288 (3)	175 175 134 147 131 121 156
			(=)	

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *DIAMOND* (Brandenburg, 2006).

We thank the National Science Council of Taiwan for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2459).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). *Organometallics*, **26**, 5826–5833.

Liao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.

Liao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692–1702.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o3362 [doi:10.1107/S1600536811048410]

1,3-Bis(2-anilino-2-oxoethyl)-1H-imidazol-3-ium chloride acetonitrile monosolvate

C.-Y. Liao and H. M. Lee

Comment

The title compound, $C_{19}H_{19}N_4O^+$. $Cl^-C_2H_3N$, is a precursor for N-heterocyclic carbene (NHC) ligands. Nickel (Liao, Chan, Chang *et al.*, 2007), palladium (Liao, Chan, Zeng *et al.*, 2007) and silver (Liao *et al.*, 2008) complexes with NHC ligands derived from the salt have been reported by us previously.

The crystal structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings is 69.57 (8)°; the dihedral angles between the imidazole ring and the phenyl rings are 70.61 (7)° for [C6–C11] and 82.11 (7)° for [C14–C19].

After deprotonation and metal coordination via C2, the N—C—N bond angles become slightly smaller. The N—C—N bond angle in the title compound is $108.59 (17)^\circ$, whereas the angles are 105.5 (2) and $106.3 (3)^\circ$ in the palladium complex (Liao, Chan, Zeng *et al.*, 2007), 104.4 (4)° in the silver complex (Liao *et al.*, 2008) and 104.9 (4)° in the nickel complex (Liao, Chan, Chang *et al.*, 2007).

One non-classical intramolecular C—H···O hydrogen bond has been detected (Table 1), whereas classical and non-classical intermolecular hydrogen bonds of the type N—H···Cl, C—H···Cl, C—H···O and C—H···N link the imidazolium cations, chloride anions and the acetonitrile molecules into a two-dimensional hydrogen-bonded network (Fig. 2).

Experimental

The compound was prepared according to the literature procedure (Liao, Chan, Zeng *et al.*, 2007). Suitable crystals were obtained by slow diffusion of diethyl ether into an acetonitrile solution of the compound at room temperature.

Refinement

All H atoms could have been detected in the difference Fourier map; nevertheless, all H atoms were positioned geometrically and refined as riding atoms, with Csp^2 —H = 0.95, C(methyl)—H = 0.98, C(methylene)—H = 0.99, and N—H = 0.88 Å; $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and 1.2 for all other H atoms.

Figures

Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are shown as spheres of arbitrary radius.

Fig. 2. A view of the crystal packing along the c axis, displaying the hydrogen bonds as dashed lines.

1,3-Bis(2-anilino-2-oxoethyl)-1H-imidazol-3-ium chloride acetonitrile monosolvate

Crystal data

$C_{19}H_{19}N_4O_2^{+}\cdot Cl^{-}\cdot C_2H_3N$	Z = 2
$M_r = 411.89$	F(000) = 432
Triclinic, PT	$D_{\rm x} = 1.294 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.7801 (6) Å	Cell parameters from 2360 reflections
b = 10.4544 (6) Å	$\theta = 2.5 - 23.9^{\circ}$
c = 12.1998 (7) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\alpha = 91.842 \ (4)^{\circ}$	T = 150 K
$\beta = 95.492 \ (4)^{\circ}$	Block, white
$\gamma = 108.096 \ (4)^{\circ}$	$0.22\times0.20\times0.15~mm$
$V = 1057.28 (11) \text{ Å}^3$	

Data collection

Bruker SMART APEXII diffractometer	5067 independent reflections
Radiation source: fine-focus sealed tube	3597 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -11 \rightarrow 11$
$T_{\min} = 0.956, T_{\max} = 0.970$	$k = -13 \rightarrow 13$
13815 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.129$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0538P)^2 + 0.377P]$ where $P = (F_0^2 + 2F_c^2)/3$
5067 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

257 parameters	$\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5447 (2)	0.28079 (19)	0.54543 (15)	0.0241 (4)
H1	0.5994	0.2311	0.5071	0.029*
C2	0.3554 (2)	0.3390 (2)	0.62012 (16)	0.0305 (4)
H2	0.2536	0.3360	0.6423	0.037*
C3	0.4941 (2)	0.4426 (2)	0.64010 (17)	0.0310 (5)
H3	0.5086	0.5259	0.6798	0.037*
C4	0.2737 (2)	0.11100 (19)	0.51452 (16)	0.0275 (4)
H4A	0.1824	0.0846	0.5598	0.033*
H4B	0.3256	0.0394	0.5162	0.033*
C5	0.2105 (2)	0.12423 (19)	0.39559 (15)	0.0247 (4)
C6	0.0091 (2)	-0.0133 (2)	0.24692 (16)	0.0261 (4)
C7	-0.0460 (3)	0.0873 (2)	0.20240 (17)	0.0356 (5)
H7	-0.0171	0.1739	0.2400	0.043*
C8	-0.1437 (3)	0.0597 (2)	0.10267 (19)	0.0429 (6)
H8	-0.1814	0.1282	0.0721	0.052*
С9	-0.1872 (3)	-0.0659 (2)	0.04710 (19)	0.0440 (6)
Н9	-0.2535	-0.0836	-0.0214	0.053*
C10	-0.1329 (3)	-0.1656 (2)	0.09242 (19)	0.0431 (6)
H10	-0.1628	-0.2523	0.0549	0.052*
C11	-0.0351 (2)	-0.1401 (2)	0.19235 (18)	0.0336 (5)
H11	0.0013	-0.2092	0.2231	0.040*
C12	0.7777 (2)	0.4883 (2)	0.59194 (16)	0.0266 (4)
H12A	0.7821	0.5827	0.5810	0.032*
H12B	0.8238	0.4563	0.5296	0.032*
C13	0.8785 (2)	0.4833 (2)	0.69954 (16)	0.0261 (4)
C14	1.1599 (2)	0.59148 (19)	0.78694 (15)	0.0255 (4)
C15	1.3085 (2)	0.6761 (2)	0.76428 (17)	0.0305 (4)
H15	1.3176	0.7179	0.6961	0.037*
C16	1.4440 (2)	0.7002 (2)	0.84055 (18)	0.0350 (5)
H16	1.5457	0.7569	0.8240	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C17	1.4306 (3)	0.6414 (2)	0.94059 (18)	0.0380 (5)
H17	1.5229	0.6573	0.9929	0.046*
C18	1.2824 (3)	0.5596 (2)	0.96405 (18)	0.0400 (5)
H18	1.2734	0.5204	1.0333	0.048*
C19	1.1455 (2)	0.5332 (2)	0.88779 (17)	0.0335 (5)
H19	1.0442	0.4762	0.9046	0.040*
C20	0.5812 (3)	0.1257 (3)	0.8373 (2)	0.0472 (4)
H20A	0.6785	0.2017	0.8313	0.071*
H20B	0.6011	0.0734	0.8992	0.071*
H20C	0.4918	0.1598	0.8499	0.071*
C21	0.5404 (3)	0.0403 (3)	0.7362 (2)	0.0472 (4)
Cl1	0.07301 (6)	0.75633 (5)	0.49516 (4)	0.03031 (14)
N1	0.38999 (17)	0.23796 (16)	0.56116 (12)	0.0244 (3)
N2	0.61030 (17)	0.40496 (15)	0.59229 (12)	0.0238 (3)
N3	0.10210 (18)	0.00739 (16)	0.35129 (13)	0.0265 (4)
H3A	0.0878	-0.0630	0.3914	0.032*
N4	1.02870 (18)	0.57136 (16)	0.70405 (13)	0.0263 (4)
H4	1.0477	0.6231	0.6482	0.032*
N5	0.5089 (2)	-0.0260 (2)	0.65673 (17)	0.0439 (5)
01	0.25525 (16)	0.22902 (13)	0.34914 (11)	0.0291 (3)
O2	0.82600 (17)	0.40675 (16)	0.77037 (12)	0.0387 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0221 (9)	0.0205 (9)	0.0291 (9)	0.0059 (7)	0.0011 (7)	0.0047 (7)
C2	0.0240 (9)	0.0343 (12)	0.0340 (10)	0.0116 (9)	0.0005 (8)	-0.0007 (9)
C3	0.0265 (10)	0.0311 (11)	0.0363 (11)	0.0121 (9)	-0.0005 (8)	-0.0058 (9)
C4	0.0208 (9)	0.0232 (10)	0.0328 (10)	-0.0004 (8)	-0.0012 (7)	0.0044 (8)
C5	0.0168 (8)	0.0237 (10)	0.0329 (10)	0.0055 (7)	0.0011 (7)	0.0022 (8)
C6	0.0183 (8)	0.0273 (10)	0.0304 (10)	0.0042 (8)	0.0008 (7)	0.0031 (8)
C7	0.0351 (11)	0.0306 (12)	0.0392 (11)	0.0118 (9)	-0.0074 (9)	-0.0044 (9)
C8	0.0421 (13)	0.0409 (13)	0.0448 (13)	0.0168 (11)	-0.0129 (10)	0.0025 (10)
С9	0.0399 (13)	0.0430 (14)	0.0411 (12)	0.0076 (11)	-0.0135 (10)	-0.0044 (10)
C10	0.0414 (13)	0.0334 (13)	0.0459 (13)	0.0040 (10)	-0.0075 (10)	-0.0097 (10)
C11	0.0294 (10)	0.0250 (11)	0.0423 (12)	0.0043 (8)	-0.0016 (9)	0.0014 (9)
C12	0.0206 (9)	0.0229 (10)	0.0326 (10)	0.0027 (7)	-0.0024 (7)	0.0042 (8)
C13	0.0224 (9)	0.0241 (10)	0.0302 (10)	0.0061 (8)	-0.0004 (7)	0.0027 (8)
C14	0.0232 (9)	0.0236 (10)	0.0279 (9)	0.0066 (8)	-0.0023 (7)	-0.0008 (8)
C15	0.0269 (10)	0.0291 (11)	0.0323 (10)	0.0048 (8)	0.0010 (8)	0.0010 (8)
C16	0.0223 (10)	0.0343 (12)	0.0431 (12)	0.0033 (9)	-0.0011 (8)	-0.0045 (9)
C17	0.0305 (11)	0.0399 (13)	0.0392 (12)	0.0102 (9)	-0.0124 (9)	-0.0039 (10)
C18	0.0387 (12)	0.0432 (13)	0.0334 (11)	0.0096 (10)	-0.0074 (9)	0.0041 (10)
C19	0.0278 (10)	0.0337 (12)	0.0337 (11)	0.0035 (9)	-0.0016 (8)	0.0047 (9)
C20	0.0476 (10)	0.0426 (10)	0.0472 (10)	0.0069 (8)	0.0084 (8)	0.0076 (8)
C21	0.0476 (10)	0.0426 (10)	0.0472 (10)	0.0069 (8)	0.0084 (8)	0.0076 (8)
Cl1	0.0255 (2)	0.0263 (3)	0.0385 (3)	0.00651 (19)	0.00336 (18)	0.0089 (2)
N1	0.0181 (7)	0.0238 (9)	0.0290 (8)	0.0039 (6)	-0.0009 (6)	0.0038 (6)

N2	0.0186 (7)	0.0217 (8)	0.0298 (8)	0.0061 (6)	-0.0024 (6)	0.0019 (6)
N3	0.0228 (8)	0.0211 (8)	0.0323 (8)	0.0031 (7)	-0.0015 (6)	0.0048 (7)
N4	0.0217 (8)	0.0252 (9)	0.0282 (8)	0.0027 (7)	-0.0015 (6)	0.0071 (7)
N5	0.0382 (11)	0.0497 (13)	0.0481 (12)	0.0195 (9)	0.0047 (9)	0.0088 (10)
01	0.0266 (7)	0.0229 (7)	0.0345 (7)	0.0035 (6)	0.0012 (6)	0.0061 (6)
O2	0.0291 (8)	0.0409 (9)	0.0363 (8)	-0.0024 (7)	-0.0021 (6)	0.0141 (7)
Geometric paran	neters (Å, °)					
C1—N1		1.327 (2)	C12—1	N2	1.4	58 (2)
C1—N2		1.330 (2)	C12—0	213	1.5	23 (2)
C1—H1		0.9500	C12—I	H12A	0.9	900
C2—C3		1.350 (3)	C12—I	H12B	0.9	900
C2—N1		1.385 (2)	C13—0	02	1.2	21 (2)
C2—H2		0.9500	C13—1	N4	1.3	49 (2)
C3—N2		1.373 (2)	C14—0	215	1.3	89 (3)
С3—Н3		0.9500	C14—0	C19	1.3	90 (3)
C4—N1		1.458 (2)	C14—1	N4	1.4	16 (2)
C4—C5		1.529 (3)	C15—0	216	1.3	90 (3)
C4—H4A		0.9900	C15—I	415	0.9	500
C4—H4B		0.9900	C16—0	C17	1.3	83 (3)
C5—O1		1.221 (2)	C16—I	H16	0.9	500
C5—N3		1.352 (2)	C17—0	C18	1.379 (3)	
C6—C11		1.388 (3)	C17—I	117	0.9500	
С6—С7		1.392 (3)	C18—C19		1.396 (3)	
C6—N3		1.417 (2)	C18—I	118	0.9	500
С7—С8		1.387 (3)	C19—I	119	0.9	500
С7—Н7		0.9500	C20—0	221	1.4	46 (3)
C8—C9		1.383 (3)	C20—H20A		0.9	800
С8—Н8		0.9500	C20—H20B		0.9	800
C9—C10		1.384 (3)	C20—I	H20C	0.9	800
С9—Н9		0.9500	C21—1	C21—N5 1.1		33 (3)
C10-C11		1.390 (3)	N3—H	3A	0.8	800
C10—H10		0.9500	N4—H4 0.8800		800	
C11—H11		0.9500				
N1—C1—N2		108.59 (17)	H12A-	C12H12B	108	3.0
N1-C1-H1		125.7	O2—C	13—N4	126	5.00 (17)
N2—C1—H1		125.7	O2—C	13—C12	122	2.57 (17)
C3—C2—N1		106.85 (17)	N4—C	13—C12	111	.43 (17)
С3—С2—Н2		126.6	C15—C14—C19		119	9.79 (17)
N1—C2—H2		126.6	C15—C14—N4		116	6.74 (17)
C2—C3—N2		107.19 (17)	C19—0	C14—N4	123	3.47 (18)
С2—С3—Н3		126.4	C14—0	C15—C16	120	0.5 (2)
N2—C3—H3		126.4	C14—0	С15—Н15	119	9.7
N1-C4-C5		110.81 (15)	C16—0	С15—Н15	119	9.7
N1—C4—H4A		109.5	C17—0	C16—C15	119	9.9 (2)
С5—С4—Н4А		109.5	C17—0	С16—Н16	120).1
N1—C4—H4B		109.5	C15—0	С16—Н16	120).1
C5—C4—H4B		109.5	C18—0	C17—C16	119	9.65 (18)

H4A—C4—H4B	108.1	C18—C17—H17	120.2
O1C5N3	125.89 (17)	С16—С17—Н17	120.2
O1—C5—C4	122.59 (16)	C17—C18—C19	121.2 (2)
N3—C5—C4	111.52 (16)	C17—C18—H18	119.4
C11—C6—C7	120.09 (17)	C19—C18—H18	119.4
C11—C6—N3	118.26 (17)	C14—C19—C18	119.0 (2)
C7—C6—N3	121.52 (17)	C14—C19—H19	120.5
C8—C7—C6	119.33 (19)	С18—С19—Н19	120.5
С8—С7—Н7	120.3	C21—C20—H20A	109.5
С6—С7—Н7	120.3	C21—C20—H20B	109.5
C9—C8—C7	121.0 (2)	H20A—C20—H20B	109.5
С9—С8—Н8	119.5	C21—C20—H20C	109.5
С7—С8—Н8	119.5	H20A-C20-H20C	109.5
C8—C9—C10	119.3 (2)	H20B-C20-H20C	109.5
С8—С9—Н9	120.4	N5-C21-C20	179.6 (3)
С10—С9—Н9	120.4	C1—N1—C2	108.53 (16)
C9—C10—C11	120.6 (2)	C1—N1—C4	125.20 (16)
С9—С10—Н10	119.7	C2—N1—C4	126.02 (16)
C11—C10—H10	119.7	C1—N2—C3	108.84 (16)
C6—C11—C10	119.7 (2)	C1—N2—C12	125.67 (16)
C6—C11—H11	120.2	C3—N2—C12	125.49 (16)
C10-C11-H11	120.2	C5—N3—C6	126.67 (17)
N2-C12-C13	111.46 (16)	C5—N3—H3A	116.7
N2—C12—H12A	109.3	C6—N3—H3A	116.7
C13—C12—H12A	109.3	C13—N4—C14	128.50 (17)
N2—C12—H12B	109.3	C13—N4—H4	115.8
C13—C12—H12B	109.3	C14—N4—H4	115.8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3A…Cl1 ⁱ	0.88	2.28	3.1624 (17)	175.
N4—H4…Cl1 ⁱⁱ	0.88	2.35	3.2287 (17)	175.
C4—H4B…N5	0.99	2.50	3.262 (3)	134.
C12—H12A···O1 ⁱⁱⁱ	0.99	2.25	3.126 (2)	147.
C12—H12B…Cl1 ⁱⁱⁱ	0.99	2.67	3.400 (2)	131.
С19—Н19…О2	0.95	2.31	2.911 (2)	121.
C20—H20A…O2	0.98	2.32	3.238 (3)	156.
	(***) · · · · · · · · ·			

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*+1, *y*, *z*; (iii) –*x*+1, –*y*+1, –*z*+1.

Fig. 1

Fig. 2

